<u>Lycée</u>

ÉTUDE DE DEUX SUITES ADJACENTES # Suites # Limites # Représentation

Énoncé :

On considère les suites (a_n) et (b_n) définies par $a_{n+1} = \frac{2a_n + b_n}{3}$ et $b_{n+1} = \frac{a_n + 3b_n}{4}$

 $\forall n \in \mathbb{N}. a_0 = 2 \ et \ b_0 = 10.$

- 1. Déterminer les valeurs exactes des trois termes suivants des deux suites.
- 2. Conjecturer le comportement des deux suites en l'infini.
- 3. En étudiant aussi la suite (c_n) définie par $c_{n+1} = 3a_n + 4b_n$ conjecturer la limite des suites (a_n) et (b_n) .
- 4. Comparer $b_n a_n$ et $8\left(\frac{5}{12}\right)^n$.

1. Détermination des premiers termes

Dans le menu Récurrence / RECUR (Graph 90+E / Graph 35+E II), saisir les relations de récurrence des deux suites. Pour sélectionner a_n et b_n , presser les touches F2 , et F3 .	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Initialiser ensuite les valeurs des premiers termes en allant dans l'onglet {SET} en appuyant sur la touche F5. La touche EXIT permet de revenir aux relations de recurrence.	MathRadNorm1d/cRealRéglageTablen+1Start:0End:10ao:2bobo:10co:0an Str:0al
Pour afficher le tableau de valeurs, presser F6 {TABLE} .	MathRadNorm1 d/c Real n+1 an+1 bn+1 2 10 1 4.6666 8 2 5.7777 7.1666 3 6.2407 6.8194 0 FORMULA DELETE PHASE WEB-GPH GPH-CON GPH-PLT
En se déplaçant dans le tableau de valeurs et en mettant en surbrillance, un à un, chacun des termes on obtient la valeur exacte des termes de la suite.	$\begin{array}{c c} \hline & \mbox{Wath} \mbox{Rad} \mbox{Norm1} & \mbox{d/c} \mbox{Real} \\ \hline & \mbox{bn + 1 = (an + 3bn) _ 4} \\ & \mbox{n+1} & \mbox{bn+1} \\ \hline & \mbox{0 = 2 & 10} \\ & \mbox{1 & 4.6666 & 8} \\ & \mbox{2 & 5.7777 & \hline 7.1666 \\ & \mbox{3 & 6.2407 & 6.8194} \\ & \mbox{3 & 6.2407 & 6.8194} \\ \hline & \mbox{43 _ 6} \\ \hline \mbox{FORMULA} \mbox{DELETS} \mbox{PHASE} \mbox{WEB-GPH} \mbox{GPH-CON} \mbox{GPH-PLT} \end{array}$

CASIO.

On obtient donc le tableau de valeurs suivant :

n	a_n	b_n
1	14	8
	3	
2	52	43
	9	6
3	337	491
	54	72

2. Comportement des deux suites en l'infini

Nous allons représenter graphiquement ces deux suites. Tout d'abord, modifier la fenêtre graphique (SHFT F3). Choisir une fenêtre adaptée suivant le tableau de valeurs que l'on a établi : de 0 à 10 sur les deux axes. Sortir de la fenêtre en appuyant sur la touche EXIT.	Fen-V max :10 scale:1 dot <td:0.02645502< td=""> Ymin <td:0< td=""> max :10 scale:1 INITIAL_TRIG_STANDRD_V-MEM_SQUARE</td:0<></td:0.02645502<>
Presser la touche F6 (GPH-PLT).	MathRadNorm1 G/2 Real
Pour avoir une meilleure idée du comportement des deux suites, il est possible de relier les points. Pour cela, il faut presser F5 {GPH-CON} .	MathRadNorm1 d/c)Real
On peut ainsi conjecturer que les deux suites convergent vers la même valeur (environ 6.6).	

4. Etude de la suite (c_n)

5. Etude de la suite (c_n)

Commencer par changer le type d'expression en pressant la touche F3 {TYPE} .	<pre>BathRadNorm1 d/cReal Sélectionner type F1: an =An+B F2: an + 1 = Aan +Bn+C F3: an + 2 = Aan + 1 + Ban + · · · an [an+1] an+2</pre>
Pour utiliser une formule explicite, sélectionner F1 et supprimer les formules precedents avec F2 {DELETE} (puis F1 pour confirmer). On tape ensuite notre expression.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Enfin, afficher le tableau de valeurs de $8\left(\frac{5}{12}\right)^n$ en pressant F6 {TABLE} .	$\begin{array}{c c} \hline \textbf{Math} \hline \textbf{Rad} \hline \textbf{Norm1} & \underline{\text{d/c}} \hline \textbf{Real} \\ \hline a_n = 8 \left(\left(5 \ \ 12 \right) \right)^{(n)} \\ \hline & \underline{a_n} \\ \hline & a$

CASIO.

En comparant ces valeurs avec les valeurs de $b_n - a_n$ (tableau donné ci-dessous), on peut conjecturer que $b_n - a_n = 8 \left(\frac{5}{12}\right)^n$ pour tout entier naturel *n*.

n	b _{n-a_n}
1	$\frac{10}{3}$
2	$\frac{25}{18}$
3	$\frac{125}{216}$

Il ne reste plus qu'à démontrer cette égalité (par récurrence) pour valider toutes nos conjectures.

Retrouvez toutes nos ressources pédagogiques sur www.casio-education.fr