TRAJECTOIRE D'UN POISSON, PARABOLE

Fonctions # Paraboles

Énoncé :

Un poisson saute dans son bocal pour aller rejoindre d'autres poissons dans un autre bocal.

Déterminer une approximation de l'équation de la trajectoire du poisson (les résultats seront arrondis au centième).

1. Visualisation de la trajectoire

Dans le Menu Plot Image, ouvrir le fichier "Jumpin". Appuyer sur OPTN, puis sélectionner (F1) (FILE), (F1) {OPEN}, F1 {CASIO}, F1 {g3b} et enfin Jumpin. Changer la position des axes à l'aide du pavé directionnel pour que l'origine du repère soit sur le poisson.

Afficher un point sur chaque position du poisson: Appuyer sur OPTN, puis sélectionner F2 {PLOT}, se positionner sur le poisson et appuyer à chaque fois sur 📖 jusqu'à ce que le message "Mémoires pts fin

Appuyer deux fois sur **EXIT** pour quitter.

2. Par tâtonnement

tracé" s'affiche.

On reconnait une trajectoire parabolique, il s'agit donc de trouver le polynôme de degré 2 correspondant. Nous allons maintenant afficher la représentation graphique dynamique de la parabole d'équation $A(x - B)^2 + C$.

Sur Pour afficher les coordonnées des points, appuyer sur PTN // {List}. On peut voir que le sommet de la parabole a approximativement pour coordonnées (0,27; 0,23).

On en déduit que B = 0,27 et C = 0,23 donc $f(x) = A(x - 0.27)^2 + 0.23$

On sait aussi que la parabole passe par l'origine du repère donc f(0) = 0 autrement dit : $A(0 - 0.27)^2 + 0.23 = 0$ Donc $A \times 0.27^2 + 0.23 = 0$

	🖹 Rad Norm1 Real 🔅
ver	<u> </u>
ycı	4 0.1639 0.1922 0.12 5 0.2135 0.2232 0.16
а	6 0.2693 0.2294 0.2 7 0.3189 0.2232 0.24
) =	
ما ب	
au 2	
- +	

Donc
$$A = \frac{-0.23}{0.27^2} = -3.29$$

On en déduit : $f(x) = -3,29(x - 0.27)^2 + 0.24$, ce qui est assez proche de ce que nous avions trouvé au point précédent.

4. Vérification par une régression quadratique

Retrouvez toutes nos ressources pédagogiques sur www.casio-education.fr

CASIO