<u>« Pour bien démarrer au lycée #01 : les équations »</u>

Equations simples

Énoncé : Résoudre les équations simples suivantes :				
① $4x + 3 = 5$	2 4x-7=2-3x	(3) $5(x+1) = 2(x-4)$		
(4) $2x + 6 = 2(x + 3)$	(5) $7-x=2-(x+4)$	6 $x(x+1) = (x-3)(x+2)$		

Correction :

① $4x + 3 = 5$	(4) $2x + 6 = 2(x + 3)$
$\Leftrightarrow 4x = 5 - 3$	$\Leftrightarrow 2x + 6 = 2x + 6$
$\Leftrightarrow x = 2 \div 4$	$\Leftrightarrow 2x - 2x = 6 - 6$
$S = \left\{\frac{1}{2}\right\}$	$\Leftrightarrow 0 = 0$, affirmation vraie pour tout x
(2)	$S = \mathbb{R}$
2 $4x - 7 = 2 - 3x$	
$\Leftrightarrow 4x + 3x = 2 + 7$	(5 7 - x = 2 - (x + 4))
$\Leftrightarrow x = 9 \div 7$	$\Leftrightarrow 7 - x = 2 - x - 4$
$\mathbf{c} = \begin{pmatrix} 9 \end{pmatrix}$	$\Leftrightarrow -x + x = -2 - 7$
$\mathbf{S} = \{\overline{7}\}$	$\Leftrightarrow 0 = -9$, affirmation fausse pour tout x
	$S = \emptyset$
3 $5(x+1) = 2(x-4)$	
$\Leftrightarrow 5x + 5 = 2x - 8$	6 $x(x+1) = (x-3)(x+2)$
$\Leftrightarrow 5x - 2x = -8 - 5$	$\Leftrightarrow x^2 + x = x^2 + 2x - 3x - 6$
$\Leftrightarrow x = -13 \div 3$	$\Leftrightarrow x^2 - x^2 + x - 2x + 3x = -6$
$S = \left\{-\frac{13}{3}\right\}$	$\Leftrightarrow 2x = -6$
	$\Leftrightarrow x = -6 \div 2 = -3$

 $S = \{-3\}$

Vérification calculatrice : Menu EXE-MAT

Pour donner une valeur à la variable X, utilisez la touche 🔿

Résolution calculatrice : Menu EQUATION - Solveur

Pour saisir l'inconnue X dans l'équation, utilisez la touche (X,θ,T) Pour obtenir le symbole = de l'équation, tapez [SHIFT] •

Equations produit

Vérification calculatrice : Me nu EQUATION - Solveur

Pour obtenir les 2 solutions et non une seule, pensez à saisir des valeurs de démarrage de la recherche de solutions très différentes l'une de l'autre (ici, par exemple, x=1000 puis x=-1000).

Equations avec identités remarquables

Résolution calculatrice : Menu EQUATION - Polynomiale

MENU PR	MathRadNorm1 d/cReal	MathRadNorm1 d/cReal
Image: Statistic grade in the statisting grade in the statistic grade in the statistic grade in t	Equation	Polynomial Aucune donnée
Graphe G-dynamique Table Récurrence	Sélectionner type bX F1:Système	en mémoire
G-conique	F2:Polynomiale F3:Solveur SMUL POLY SOLVER	Degré? 2 3 4 5 6
$\frac{1}{a \times b \times c} \frac{Math[Rad[Norm1] \ d/c][Real]}{a \times b \times c} $	MathRadNorm1 d/cReal a X ² + b X + c = 0	
abc □961_	X1[-0.333] ×2	
	1	

Choisir le degré 2 puis entrer les valeurs : les nombres a, b, c à saisir dans le tableau sont les valeurs se trouvant dans votre équation écrite sous la forme : $ax^2 + bx + c = 0$

Systèmes d'équations

Résoudre le système d'équations à deux inconnues :

 $\begin{cases} 2x+y=6\\ 3x-2y=-5 \end{cases}$

$S = \{(1; 4)\}$

Résolution calculatrice : Menu EQUATION - Système

Choisir le nombre d'inconnues puis les nombres a, b, c à saisir dans chaque ligne du tableau sont les valeurs dans chaque équation du système écrite sous la forme : ax + by = c

CASIO